(734) 327 4079 info@ansight.com
AnSight’s Solutions for COVID-19

Rate of Heating Analysis of Data Centers during Power Shutdown

ASHRAE Transactions, ASHRAE Transactions Volume 117, Part 1- Conference Paper, 2011


Kishor Khankari


During power outages servers in the data centers are generally powered by uninterruptible power supplies (UPS). At the same time the sources for active cooling such as CRACs, CRAHs, and chillers stop operating for a period until powered by alternate power sources. During this period servers continue to generate heat without any active cooling. This results in increase in the room air temperature within a short period that can be detrimental to the servers. This paper, with the help of a mathematical model, indicates that the rate of heating of a data center can start initially at a certain maximum level, and can then gradually reduce to a certain minimum level, which is the lowest possible rate of heating that a data center can attain. The rate of such exponential decay is a function of the time constant, which is the characteristic of a data center design and layout. The time constant depends on the heat capacity ratio and the specific surface area of racks in a data center. This paper analyzes various factors that affect these parameters and demonstrates how the time constant can be employed as a matrix to compare the thermal performance of data centers during the power outage period.

Fill the following form to download

    About the author

    Dr. Kishor Khankari

    ASHRAE Fellow, ASHRAE Distinguished Lecturer

    Dr Kishor Khankari is the founder of AnSight LLC. As a specialist in Computational Fluid Dynamics (CFD), his passion for solving engineering problems and providing sound scientific solutions has led to innovations and optimized designs in the industry.

    A noted expert in his field, he has a Ph.D. from the University of Minnesota and has published in several technical journals and trade magazines. As a well sought-after speaker Dr. Khankari makes regular presentations in various technical conferences and professional meetings worldwide.

    Recent Posts

    Ventilation Guidance for Residential Kitchen with Gas Stove

    Recently the residential gas stoves were in the News due to the generation of pollutants during their operation. Cooking activities as well as the combustion of natural gas through gas stove burners produce several indoor pollutants. Exhausting these pollutants from...

    CFD Analysis of Residential Kitchen Ventilation with Gas Stove

    Proper ventilation of the kitchen is essential to reduce the occupant exposure to various pollutants generated during the cooking and the combustion of natural gas through the gas stove burners. Several parameters related to the design and operation can affect the...

    CFD Analysis of Demand Control Ventilation for Laboratories

    What is Demand Control Ventilation (DCV)? Often high air change rates per hour (ACH) are specified for laboratories to meet the goal of ventilation. The ACH numbers specified are mostly consensuses based on simplistic approaches of perfect mixing of contaminants with...

    CFD Analysis Evaluates Efficacy of Reactive Air Cleaning Technology

    What is reactive air cleaning? Reactive air cleaning involves the release of reactive agents in the room to actively mitigate airborne pathogens and other pollutants. Unlike traditional dilution ventilation in which the concentration of the airborne pathogens in the...