(734) 327 4079 info@ansight.com
AnSight’s Solutions for COVID-19

A mathematical model for natural convection moisture migration in stored grain

Trans. of the ASAE Vol. 38(6): 1777-1787, 1995


Kishor Khankari, S. V. Patankar and R.V. Morey


Thermal gradients that develop due to the seasonal variations in ambient temperatures cause natural convection air-flow and migration of moisture within bulk grain. In this article^ a mathematical model of moisture migration is developed by reflecting the change in air moisture on the grain moisture through the sorption isotherm. Thus the effect of temperature and moisture gradients are clearly separated in the conservation of moisture equation. The differential equations for energy are developed by using moisture dependent thermal properties. Natural convection Darcy flows are computed by solving an equation for the pressure, which represents the continuity equation. The resulting unsteady, nonlinear, coupled differential equations are numerically solved using a control-volume scheme. Natural convection moisture migration is also experimentally simulated under laboratory conditions. The validity of the numerical model is evaluated by comparing the experimental results with the predicted results.

Fill the following form to download

    About the author

    Dr. Kishor Khankari

    ASHRAE Fellow, ASHRAE Distinguished Lecturer

    Dr Kishor Khankari is the founder of AnSight LLC. As a specialist in Computational Fluid Dynamics (CFD), his passion for solving engineering problems and providing sound scientific solutions has led to innovations and optimized designs in the industry.

    A noted expert in his field, he has a Ph.D. from the University of Minnesota and has published in several technical journals and trade magazines. As a well sought-after speaker Dr. Khankari makes regular presentations in various technical conferences and professional meetings worldwide.

    Recent Posts

    Can Indoor Airflow Patterns Affect the Upper-Room UVGI Performance?

    What is Ultraviolet Germicidal Irradiation (UVGI) (UV-C)? Upper-room Ultraviolet Germicidal Irradiation (UVGI) involves the use of UVC to inactivate airborne pathogens. Wall or ceiling-mounted UVC fixtures are placed near the ceiling to generate a UVC field at 254 nm...

    Aerodynamic Containment Can Reduce Spread of Infectious Aerosols

    Building Ventilation and Airborne Transmission of Infectious Aerosols Air is the primary carrier of heat, moisture, and airborne contaminants including infectious aerosols in indoor spaces. The primary goal of building ventilation is to create a healthy environment...